1.浅谈空调水系统的设计与施工?

2.中央空调哪种情况下供回水需要安装压差旁通阀?是根据什么原理设计,其中旁通管大小又是依据什么设计?

3.关于通风空调系统联合试运转及调试的说法,正确的有(  )。

4.暖通空调设计常见知识点问题汇总及解决?

5.空调水系统的节能方式与水泵调节示例?

空调供回水压力差一般多少_空调水系统供回水压差多少

空调循环水压差一般可通过电动方式调节,以保证系统正常的运行。具体来说,当系统供水和回水的压力差增大,并且超出控制器的承受范围时,控制器就会通过控制电动阀门,使之增大,进而让循环水从旁通阀流过,促使系统的供水和回水压力差减少。相反,当压差之出现低于系统要求时,控制器就会发出关小指令,增加系统压差。

浅谈空调水系统的设计与施工?

暖通空调节能问题是非常实际的,鱼与熊掌不可兼得,只有在技术上寻求突破才能达到最终的目的,每个细节处理也很关键。中达咨询就暖通空调节能问题和大家说明一下。

空调节能主要依靠自控,现在最主要的是DDC自控,我以下给你说了个大概,具体设计比较繁杂,可找想关资料参考。

1、动力机房

楼宇自动化系统通过DDC控制器来完成对各机组的启动/停止,冷水机组数量及各相关设备的连锁进行控制,其主要控制功能有:(1)据实际冷热负荷控制冷水机组及水泵的运行台数,以达到节能效果。通过冷冻水供水温度及回水温度的差和回水流量计算出冷冻水系统的冷负荷,并根据实际冷负荷决定投入运行的制冷机组及相关设施的数量,以达到最佳的节能状态。冷冻水供回水温度为12/6度。2)如下顺序启动和停止冷冻系统,以保证系统正常运转。启动:冷冻水电动阀,冷冻水泵、判断冷冻水管内是否有水流通过、15秒后冷水机组。停止:冷水机组、15秒后冷冻水电动阀,冷冻水泵。冷冻水泵备用机制,保证事故情况及延长设备使用寿命。制冷系统中,各台冷冻水泵互为备用,当任何一台冷冻水泵出现故障时,DDC控制器会根据有关水泵的运行时间累计,投入运行时间最短的水泵运行,补足需要的冷冻水量。(3)系统检测到任何一个冷冻水的水流开关报警后将停止有关机组的运行,并技入另一机组运行。(4)DDC控制器根据制冷机组的运行累积时间,每次启动累积时间最少的一台制冷机组,以达到机组运行时间的平衡。冷冻水系统中总供水,总回水之间的压差值(△P)与系统中的差压设定值进行比较后,控制旁通阀的开度,以维持冷冻水系统压力在合理的水平。

控制中心微机上检测,画面上实时显示以下参数。

a、机组启停时间,运行时间累计。

b、冷冻水供回水压差、温度、流量、冷量。

c、冷水机组运行状态、过载报警。

2、冷却水系统

为使机组在过度季冷却水温低于18℃时仍能正常运行,在冷却水供回水总管间设电动调节阀,当水温低于18℃时,电动阀按比例开启,一部分循环水由旁通管流回,与低温水混合,提高冷却水温度,保证机组能够正常运行。

3、空调末端设备

控制原理:按时间程序和最佳启停控制送回风机运行。起动次数、运行时间累计。根据新风温度、室内温度和房间温度设定值,通过最佳启停控制器,计算出空调机开/关的最佳时间,以达到节省能源。

(1)送风机与新、回风电动阀联锁运行。

(2)停机时回风阀全开,新风阀全关。

(3)防火系统与风机联锁。发生火警时,空调机自动停机。

(4)风机与冷冻水阀联锁,风机停时,冷冻水阀自动关闭。

(5)通过时间程序对空调机进行定时启停,时间预定可长达一年。

(6)可以根据现场的具体情况和用户的要求,对这些程式中的参数及连锁点进行修改和设定。

(7)用室内设定温度控制回风和新风的风比例。

(8)DDC控制器将检测来的新风温度和室外温度设定经过比例计算逻辑判断后,调节合适的新风阀和回风阀开度,以保证在四季能提供足够的新风量,而在新风温度接近室内温度设定时,更尽量引入新风,使其达到节能之工效。

(9)空调机组、新风机组送风总管上设温度传感器,其所测风温与设定值比较后,输出电信号,调整回水管比例积分电动调节阀的开度,调节水流量,保证回风温度在设定的波动范围内。

(10)设于表冷器(兼加热器)后的温度传感器所测风温低于设定值(5℃)时,防冻报警器发出报警信号,由控制系统关闭电动新风阀,同时回水管电动调节阀开到最大,防止表冷器冻裂。

(11)风机盘管用温控开关控制回水管上的电动两通阀的开关状态,达到控制室内温度的目的。客房新风机全部在送风总管上增加全自动干蒸汽加湿器,以保证冬季室内的湿度要求。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

中央空调哪种情况下供回水需要安装压差旁通阀?是根据什么原理设计,其中旁通管大小又是依据什么设计?

下面是中达咨询给大家带来关于空调水系统的设计与施工的相关内容,以供参考。

一.设备间面积及层高与管路布置原则

随着智能建筑及建筑功能的发展,设备布置所需的空间越来越受限制了。设备间的管路管线只有认真合理的进行空间管理,才能节省空间,并避免不必要的返工。

设备层布置原则:20层以内的高层建筑:宜在上部或下部设一个设备层

30层以内的高层建筑:宜在上部和下部设两个设备层

30层以上超高层建筑:宜在上、中、下分别设设备层

生产厂房宜在其周边辅房内设空调设备,冷水机组及锅炉房等设备宜设在独立的建筑内。

设备层内管道布置原则:离地h≤2.0m布置空调设备,水泵等

h=2.5~3.0m布置冷、热水管道

h=3.6~4.6m布置空调通风管道

h〉4.6m布置电线电缆

设备层层高概略:

建筑面积(m2)设备层层高(m)建筑面积(m2)设备层层高(m)10004.0150005.530004.5200006.050004.5250006.0100005.0300006.5

在实际施工中往往因为机房空间不够或管线布置不合理,导致没有空调水阀组的安装位置,阀门装设过高,不便操作。

二.水泵选择与安装

在设计空调水系统时应进行必要的水力计算,根据设计流量计算出在该流量下管路的阻力,以确保选用水泵的扬程合理。在对流量和扬程乘以一定的安全裕量后,进行水泵的选择。有些设计人员未进行设计计算,认为扬程大一些保险,导致所选择的水泵不能满足要求,或者造成运行费用增加,甚至水泵不能正常工作。

一般工程项目中配置的冷水机组都在2至4台之间,对于规模很大的工程项目,甚至需要5台以上的冷水机组并联工作。制冷站内的主机与水泵的匹配一般来说是一机对一泵,以保证冷水机组的水流量及正常运行,因此,目前我国空调水系统大多为有2台或2台以上水泵并联的定流量系统或一次泵变流量系统。空调设计时,都是按最大负荷情况来进行设备选择以保证最不利情况时的需要。在循环水泵用并联运行方式时,选择水泵一定要按管路特性与水泵并联特性曲线进行选型计算。选型时,除应注意水泵在设计工况时的性能参数外,还应关注水泵的特性曲线,尽量选择特性曲线陡的水泵并联工作。运行人员应注意工况转换时对阀门的调节。

很多空调设计都是冬夏两用的,即随着季节的变化,为盘管供应冷水或热水。冬季热负荷一般比夏季冷负荷小,且空调水系统供回水温差夏季一般取5℃,冬季取10℃,根据空调水系统循环流量计算公式G=0.86Q/ΔT(式中Q为空调负荷KW,ΔT为水系统温差℃,G为水系统循环流量m3/h),则夏季空调循环水流量将是冬季的2-3倍。所以水泵应根据夏季工况参数选型。

水泵安装时,其进出水口均应安装金属软接或橡胶软接,以减小振动对管路的影响,并保护水泵。重量大于300kg的水泵应安装惯性基础和减震器。惯性基础一般用型钢框架内填混凝土(C30)制作。惯性基础的重量一般为水泵自重的1.5—2倍。减震器应根据惯性基础重量和水泵重量并考虑水泵的动载荷选取。此外还应在水泵惯性基础上安装水平限位装置。

水泵出口声响异常,一般是系统阻力太大,导致系统缺水来引起的。

解决方法:1.再开启一台水泵。运行两台水泵时,异响消失。

2.适当关小泵出口阀门,异响消失。

3.泵前过滤器太脏,吸不上水,拆洗过滤器。

4.系统排气,减小系统阻力。

三.冷冻水系统设计与施工

1.系统冷冻水(或盐水)流量估算0.14~0.20L/S(0.25~0.40L/S)/冷吨。1RT=3516.91W。

2.冷冻水系统的补水量(膨胀水箱)

水箱容积计算:Vb=a△tVsm3

Vb—膨胀水箱有效容积(即从信号管到溢流管之间高差内的容积)m3

a—水的体积膨胀系数,a=0.0006L/℃

△t—最大的水温变化值℃

Vs—系统内的水容量m3,即系统中管道和设备内总容水量

3.冷冻水系统流速规定

DN100及以上管道:2.0m/s~3.0m/s

DN80~DN100管道:1.0m/s~2.0m/s

DN40~DN80管道:1.0m/s左右

DN40以下管道:1.0m/s以下

无论如何,冷冻水系统管路的流速不应大于3.0m/s。

系统运行时或刚开机时,水中不可避免混有空气,所以系统管路上应根据管径安装自动放气阀。特别要注意立管顶端最易积聚空气,阻碍冷冻水正常流动,必须安装自动放气阀。为便于维修,在过滤器及控制阀处应设置旁通管,在水泵的进出口处,系统最低点和局部低点应设排水阀。

生产厂房内冷冻水系统如果系统较大,末端设备较多时,建议用同程式系统。既可以避免安装多级平衡阀,节约成本,又容易达到水力平衡。

冷冻水系统管路多用焊接,焊渣等杂物非常容易掉到管道内,堵塞过滤器或盘管。所以安装完成后,应进行管路清洗,清洗时应敲打管路,除去附着在管内壁的焊渣等杂物。系统初次运行一周后应清洗过滤器。空调水管路焊接应该用氩弧焊打底,电焊盖面。因为氩弧焊打底不会出现焊渣,且焊缝致密,不易渗漏。

冷冻水系统初次运行时,应先打开供水阀,待系统充满水后,再打开回水阀,以利于去除管路的杂质,防止进入盘管。

四.冷却水系统设计与施工

制冷机冷却水量估算表

活塞式制冷机(t/kw)0.215离心式制冷机(t/kw)0.258吸收式制冷机(t/kw)0.3螺杆式制冷机(t/kw)0.193~0.322

冷却塔的选择:

1.现在一般中央空调工程使用较多的是低噪声或超低噪声型玻璃钢逆流式冷却塔,其国产品的代号一般为DBNL-水量数(m3/h)。如DBNL3-100型表示水量为100m3/h,第三次改型设计的超低噪声玻璃钢逆流式冷却塔。即:水量数(m3/h)=(主机制冷量+压缩机输入功率)÷3.165

2.初先的冷却塔的名义流量应满足冷水机组要求的冷却水量,同时塔的进水和出水温度应分别与冷水机组冷凝器的出水和进水温度相一致。再根据设计地室外空气的湿球温度,查产品样本给出的塔热工性能曲线或说明,校核塔的实际流量是否仍不小于冷水机要求的冷却水量。

3.校核所选塔的结构尺寸、运行重量是否适合现场安装条件

4.简要经验值计算公式:

设备总冷量(KW)-856(大卡)÷3000-(1.2~1.3)=冷却塔水流量

冷却水系统的补水量包括:1蒸发损失2漂水损失3排污损失4泄水损失

建议冷却水系统的补水量取为循环水量的1—1.6%,电制冷、水质好时,取小值,溴化锂吸收式制冷、水质差时,取大值。冷却水系统设计应注意的问题

1.多台冷却塔并联时,冷却塔进水管路应设置平衡阀或电动控制阀,平衡管路阻力。

2.冷却水系统水质较差时,应设计旁滤系统,过滤冷却水。

3.在有结冻危险的地区,冷却塔间歇运行时,为防止冷却塔水池结冰,应设加热管线。室外冷却水管应保温。

冷却塔漂水过大是施工调试中经常遇到的问题。其主要原因是冷却水量超过额定流量。调节冷凝器进出水阀门,观察出水压力表,把压差控制在额定范围内(一般压差为0.08MPa左右),一般就可以解决问题。如果不行,再去查看布水器喷口喷射角度是否过于朝下,调节冷却塔布水器的喷射角度,使其稍有倾斜(15度)。

五.冷凝水系统设计与施工

通常,可以根据机组的冷负荷Q(KW)按下列数据近似选定冷凝水管的公称直径。

Q≤7kWDN=20mm

Q=7.1~17.6kWDN=25mm

Q=101~176kWDN=40mm

Q=177~598kWDN=50mm

Q=599~1055kWDN=80mm

Q=1056~1512kWDN=100mm

Q=1513~12462kWDN=125mm

Q>12462kWDN=150mm

注:1.DN=15mm的管道,不推荐使用。2.立管的公称直径,就与水平干管的直径相同。3.冷凝水管的公称直径DN(mm),应根据通过冷凝水的流量计算确定

风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。排放冷凝水管道的设计,应注意以下事项:

1.沿水流方向,水平管道应保持不小于千分之一的坡度;且不允许有积水部位。

2.当冷凝水盘位于机组负压区段时,凝水盘的出水口处必须设置水封,水封的高度应比凝水盘处的负压(相当于水柱高度)大50%左右。水封的出口,应与大气相通。为了防止冷凝水管道表面产生结露,必须进行防结露验算。

3.冷凝水立管的顶部,应设计通向大气的透气管。

4.设计和布置冷凝水管路时,必须认真考虑定期冲洗的可能性,并应设计安排必要的设施。

5.大型电子厂房的MAU机组,AHU机组因冷凝水量大,应考虑回收。回水的冷凝水可以做为冷却塔的补水。

冷凝水施工中,管道安装一定注意不能倒坡。很多情况都是因为倒坡使冷凝水不能正常排放,导致凝水盘处溢水。安装时存水弯的高度应符合设计要求,否则冷凝水不能排出。

冷凝水管在吊顶上敷设时,应认真保温,防止结露。

四.冷却水系统设计与施工

制冷机冷却水量估算表

活塞式制冷机(t/kw)

0.215离心式制冷机(t/kw)0.258吸收式制冷机(t/kw)0.3螺杆式制冷机(t/kw)0.193~0.322

冷却塔的选择:

1.现在一般中央空调工程使用较多的是低噪声或超低噪声型玻璃钢逆流式冷却塔,其国产品的代号一般为DBNL-水量数(m3/h)。如DBNL3-100型表示水量为100m3/h,第三次改型设计的超低噪声玻璃钢逆流式冷却塔。即:水量数(m3/h)=(主机制冷量+压缩机输入功率)÷3.165

2.初先的冷却塔的名义流量应满足冷水机组要求的冷却水量,同时塔的进水和出水温度应分别与冷水机组冷凝器的出水和进水温度相一致。再根据设计地室外空气的湿球温度,查产品样本给出的塔热工性能曲线或说明,校核塔的实际流量是否仍不小于冷水机要求的冷却水量。

3.校核所选塔的结构尺寸、运行重量是否适合现场安装条件

4.简要经验值计算公式:

设备总冷量(KW)-856(大卡)÷3000-(1.2~1.3)=冷却塔水流量

冷却水系统的补水量包括:1蒸发损失2漂水损失3排污损失4泄水损失

建议冷却水系统的补水量取为循环水量的1—1.6%,电制冷、水质好时,取小值,溴化锂吸收式制冷、水质差时,取大值。冷却水系统设计应注意的问题

1.多台冷却塔并联时,冷却塔进水管路应设置平衡阀或电动控制阀,平衡管路阻力。

2.冷却水系统水质较差时,应设计旁滤系统,过滤冷却水。

3.在有结冻危险的地区,冷却塔间歇运行时,为防止冷却塔水池结冰,应设加热管线。室外冷却水管应保温。

冷却塔漂水过大是施工调试中经常遇到的问题。其主要原因是冷却水量超过额定流量。调节冷凝器进出水阀门,观察出水压力表,把压差控制在额定范围内(一般压差为0.08MPa左右),一般就可以解决问题。如果不行,再去查看布水器喷口喷射角度是否过于朝下,调节冷却塔布水器的喷射角度,使其稍有倾斜(15度)。

五.冷凝水系统设计与施工

通常,可以根据机组的冷负荷Q(KW)按下列数据近似选定冷凝水管的公称直径。

Q≤7kW

DN=20mm

Q=7.1~17.6kWDN=25mm

Q=101~176kWDN=40mm

Q=177~598kWDN=50mm

Q=599~1055kWDN=80mm

Q=1056~1512kWDN=100mm

Q=1513~12462kWDN=125mm

Q>12462kWDN=150mm

注:1.DN=15mm的管道,不推荐使用。2.立管的公称直径,就与水平干管的直径相同。3.冷凝水管的公称直径DN(mm),应根据通过冷凝水的流量计算确定

风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。排放冷凝水管道的设计,应注意以下事项:

1.沿水流方向,水平管道应保持不小于千分之一的坡度;且不允许有积水部位。

2.当冷凝水盘位于机组负压区段时,凝水盘的出水口处必须设置水封,水封的高度应比凝水盘处的负压(相当于水柱高度)大50%左右。水封的出口,应与大气相通。为了防止冷凝水管道表面产生结露,必须进行防结露验算。

3.冷凝水立管的顶部,应设计通向大气的透气管。

4.设计和布置冷凝水管路时,必须认真考虑定期冲洗的可能性,并应设计安排必要的设施。

5.大型电子厂房的MAU机组,AHU机组因冷凝水量大,应考虑回收。回水的冷凝水可以做为冷却塔的补水。

冷凝水施工中,管道安装一定注意不能倒坡。很多情况都是因为倒坡使冷凝水不能正常排放,导致凝水盘处溢水。安装时存水弯的高度应符合设计要求,否则冷凝水不能排出。

冷凝水管在吊顶上敷设时,应认真保温,防止结露。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

关于通风空调系统联合试运转及调试的说法,正确的有(  )。

(1)中央空调的冷冻水供回水管一般都要安装压差旁通阀。

(2)其原理是通过压差控制器感测供水与回水两端水压力,然后根据测试到的压力计算出差值,再由压差控制器根据计算出的差值与预先设定值进行比较决定输出方式,以控制阀门是增加开度或减少开度,从而来调节水量,以达到平衡主机系统的水压力的目的。

(3)旁通管大小的设计依据:旁通管的大小经验值是按主管的1/3计算,进位到常用的管径。

中央空调系统由一个或多个冷热源系统和多个空气调节系统组成。用液体气化制冷的原理为空气调节系统提供所需冷量,用以抵消室内环境的冷负荷;制热系统为空气调节系统提供所需热量,用以抵消室内环境热负荷。制冷系统是中央空调系统至关重要的部分,其用种类、运行方式、结构形式等直接影响了中央空调系统在运行中的经济性、高效性、合理性。

暖通空调设计常见知识点问题汇总及解决?

答案:B、D、E

2021教材P204

系统非设计满负荷条件下的联合试运转及调试应符合下列规定。

1)系统总风量调试结果与设计风量的允许偏差应为-5%~+10%,建筑内各区域的压差应符合设计要求。系统经过风量平衡调整,各风口及吸风罩的风量与设计风量的允许偏差不应大于15%。设备及系统主要部件的联动应符合设计要求,动作应协调正确,不应有异常现象。

2)空调水系统应排除管道系统中的空气;系统连续运行应正常平稳;水泵的流量、压差和水泵电机的电流不应出现10%以上的波动。空调冷(热)水系统、冷却水系统的总流量与设计流量的偏差不应大于10%。

3)水系统平衡调整后,定流量系统的各空气处理机组的水流量应符合设计要求,允许偏差应为15%;变流量系统的各空气处理机组的水流量应符合设计要求,允许偏差应为10%。

4)冷水机组的供回水温度和冷却塔的出水温度应符合设计要求;多台制冷机或冷却塔并联运行时,各台制冷机及冷却塔的水流量与设计流量的偏差不应大于10%。

空调水系统的节能方式与水泵调节示例?

暖通空调设计常见知识点问题汇总及解决具体内容是什么,下面中达咨询为大家解答。

水泵在系统的设计位置

一般而言,冷冻水泵应设在冷水机组前端,从末端回来的冷冻水经过冷冻水泵打回冷水机组;冷却水泵设在冷却水进机组的水路上,从冷却塔出来的冷却水经冷却水泵打回机组;热水循环泵设在回水干管上,从末端回来的热水经过热水循环泵打回板式换热器。

冷却塔上的阀门设计

1、冷却塔进水管上加电磁阀(不提倡使用手动阀)

2、管泄水阀应该设置于室内,(若放置在室外,由于管内有部分存水,冬天易冻)。

电子水处理仪的安装位置

放置于水泵后面,主机前面。

过滤器前后的阀门

过滤器前后放压力表。

水泵前后的阀门

1、水泵进水管依次接:蝶阀-压力表-软接。

2、水泵出水管依次接:软接-压力表-止回阀-蝶阀。

分/集水器

1、分/集水器之间加电动压差旁通阀和旁通管(管径一般取DN50)。

2、集水器的回水管上应设温度计。

各种仪表的位置

布置温度表,压力表及其他测量仪表应设于便于观察的地方,阀门高度一般离地1.2-1.5m,高于此高度时,应设置工作平台。

机组的位置

两台压缩机突出部分之间的距离小于1.0m,制冷机与墙壁之间的距离和非主要通道的距离不小于0.8m, 大中型制冷机组(离心,螺杆,吸收式制冷机)其间距为1.5-2.0m。制冷机组的制冷机房的上部最好预留起吊最大部件的吊钩或设置电动起吊设备。

问题点一:水管的坡度要合理

1、水平支、干管,沿水流方向应保持不小于0.002的坡度;

2、机组水盘的泄水支管坡度不宜小于0.01。

3、因条件限制时,可无坡度敷设,但管内流速不得小于0.25m/s。

问题点二:冷凝水干管的设计

1、冷凝水应就近排放,一般排于卫生间地漏。

2、凝水干管的长度设计要考虑因坡降引起的高度,管两端高低落差距离不能大于吊顶高度。

问题点三:选择合适的管路阀件

1、立管与水平管连接处装调节阀

3、水管路的每个最高点设排气装置(当无坡度敷设时,在水平管水流的终点)

3、立管最低处连接关断阀,便于维修立管

4、水管的热力补偿可以利用弯头自然补偿,不足时也可加设膨胀补偿器

问题点四:水管布置

1、立管在管道井内不宜乱放,宜靠墙靠角安放(见附图)

2、管道在水平面内禁止穿越楼梯、剪力墙、配电室等

问题点五:水管保温

1、保温结构一般由保温层和保护层组成

2、保温层厚度要根据热力计算确定,经验值可参考《民用建筑空调设计》。

3、保温材料可因地制宜,就近取材,应用非燃或难燃材料,必须符合《建筑设计防火规范》。

问题点六:水力计算

1、空调水系统各并联环路压力损失差额,不应大于15%;

2、水管路比摩阻宜控制在100-300Pa/m。

问题点七:水系统补水

1、空调水系统补水应经软化水处理,仅夏天供冷的系统可用电子水处理仪;

2、系统补水量取系统水容量的2%;

3、补水点宜设在循环水泵的吸入段。

末端设计中应注意的问题点

1.接风管的风盘的风口设计,见附图。

1)第一个送风口与风盘的出风口的距离要适当;

2)带有两个出风口的风盘送风管要变径;

3)风盘的送风口与回风口距离要适当。(≤5米)

2.风机盘管的进出水管路设计,见附图1-2。

1)进出水管路为"上进下出";

2)风盘与供回水干管的相对标高不小于200mm;

3)进水管上依次接过滤器、闸阀、和软接;

4)出水管上接软接、闸阀。

3.同型号风盘的出风口数量的确定

同型号风盘的出风口数量可视空调区域的不同而定,见附图1-3。

4.两个小包间共用一个风盘的气流组织

两个小包间共用一个风盘,每个包间可设一个出风口,两个包间的回风口可以通过串联接到风盘的回风口上。

5.靠近窗口的风盘布置:

为抵挡室外冷负荷渗透,风机盘管应该尽量靠近外墙、外窗布置。

6.大空间的风机盘管的布置:

在大空间布置风机盘管时,宜以中间回风,两边送风的气流组织方式布置风盘。

7.嵌入机的布置:嵌入机布置时离边墙的距离不得大于3米;

诸如会议室、多功能厅等布置嵌入机时应该选用小冷量的多台机器,均匀布置。

8.内机选型:大空间可选用嵌入机,长方形办公室最好选用卡式机。

9.风口选型:高空间不宜选用散流器送风(风不宜送达工作区),最好使用可调双层百叶送风口。

10.回风箱的做法:

空气处理机的回风设计:在回风处做比较大的回风箱,在回风箱一侧开回风口,该做法可调节气流,降低噪音)。

11.根据房间功用和冷负荷设计合适的风盘。

风盘选型要以设计负荷为依据,风盘布置要考虑空调房间的特点尽量布置美观。

12.送、排风口的距离要适当。

排风口与送风口至少保持3米的距离以防气流短路。

13.选用合适的风阀。

从原则上讲,系统风压平衡的误差在10%-15%以内,可以不设调节阀,但实际上仅靠调风管尺寸来调风压是很困难的,所以,要设风量调节阀进行调节。

① 风管分支处应设风量调节阀。在三通分支处可设三通调节阀,或在分支处设调节阀。

② 明显不利的环路可以不设调节阀,以减少阻力损失。

③ 在需防火阀处可用防火调节阀替代调节阀。

④ 送风口处的百叶风口宜用带调节阀的送风口,要求不高的可用双层百叶风口,用调节风口角度调节风量。

⑤ 新风进口处宜装设可严密开关的风阀,严寒地区应装设保温风阀,有自动控制时,应用电动风阀。

14.风管的布置。

① 要尽量减少局部阻力,即减少弯管、三通、变径的数量。

② 弯管的中心曲率半径不要小于其风管直径或边长,一般可用1.25倍直径或边长。

③ 为便于风管系统的调节,在干管分支点前后,应预留测压孔。测压孔距前面的局部管件的距离应大于5b(b为矩形风管的长边或圆形风管的直径),距后面的局部管件的距离应不小于2b。通风机出口处气流较稳定的管段上宜应预留测压孔。

15.新风进口位置

① 进风口宜设在室外空气比较洁净的地方,保证空气质量。

② 宜设在北墙上,避免设在屋顶和西墙上,并宜设在建筑物的背阴处这样可以使夏季吸入的室外空气温度低一些。

③ 进风口底部距室外地面不宜小于两米,当进风口布置在绿化地带时,则不宜小于一米。

④ 应尽量布置在排风口的上风侧,且低于排风口,并尽量保持不小于10米的间距。

16.新风口的要求

① 宜用固定百叶窗。

② 多雨地区宜用防水百叶窗以防雨水进入。

③ 为防止鸟类进入,百叶窗内宜设金属网。

17.排风管的新做法

类似酒店客房的排风系统设计可如下考虑:利用排气扇将室内风排到走廊的吊顶内,在走廊设排风管排风,为有效利用余热,排风机可设置于卫生间。

18.风口与边墙的距离:风口距墙不应小于1米。

19. 风口的选用:

① 新风口,送风口用双层百叶风口;

② 回风口用格栅风口;

③ 排风口用双层百叶;

④ 氟系统由于风量一般比较小,如要求冬季暖需要,宜用用双层百叶,不能用散流器。

⑤ 风机盘管带两个风口时宜选用带调节阀的双层百叶。

20. 风口的凝露

风口凝露是由于风口小,温度低。可加大风口尺寸防止凝露。

21.静压箱的计算

① 静压箱控制风速宜不大于1.5m/s

② 出风截面积A=G/V(G为送风量),各方向截面积应一样

③ 一般的系统可以用风口变径加消音器代替静压箱

22.防排烟换气次数的确定。

① 消防水泵间不小于4次

② 变电室5-8次

③ 变电室5-8次

23.排烟口的布置。

①走廊超过60米,做排烟口。

②电梯前室用常开型多叶送风口,每层设一个。

③楼梯间用自垂百叶风口,2-3层设一个。

24.房间的空气压力状态。

①建筑物内的空气调节房间应维持正压。

②建筑物内的厕所、盥洗间、各种设备用房应维持负压负压。

③旅馆客房内应维持正压,盥洗间应维持负压。

④餐厅的前厅应维持正压,厨房应维持负压。餐厅内的空气压力应处于前厅和厨房之间。

25.吊顶内的风管布置原则:从上到下依次为:排烟风管,排风管,送风管,水管。

26.送、排风口的相对位置

空调房间并行送排风管时,送排风口尽量不要并列布置,最好交错布置。

27.送风管的设计

尽量使风在送风管内不倒走,确保良好的管内气流流动和出风效果。

28.三通与风管的搭接

和三通相接的管径要于三通的口径保持一致,不要变径,避免局部损失过大。

关于通风、排烟和防烟

1.排除余热余湿的通风换气次数的确定。

①消防水泵间不小于8次/h;

②变电室10次/h。

2.排烟主要是对地下车库、面积超过100m2且无外窗的房间、内走道、中庭及面积超过50m2的地下室。

①排烟量计算详见《高层民用建筑设计防火规范》

3.防烟

主要是对防烟楼梯间及消防电梯前室(合用前室)进行加压送风。

①风量计算参见《高层民用建筑设计防火规范》。

②风口设置消防电梯前室(合用前室)必须每层设置多叶送风口,防烟楼梯间可以隔层设置自垂式百叶送风口。

另外也可以用自然排烟,即在有外窗并且外窗的可开启面积满足一定的要求,可以不用机械防烟。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

空调系统中存在的挑战:

空调系统能量节省的条件:

公共建筑节能设计规范(GB50189-2015):

4.1.1甲类公共建筑的施工图设计阶段,必须进行热负荷计算和逐项逐时的冷负荷计算。

4.5.1集中供暖通风与空气调节系统,应进行监测与控制。建筑面积大于20000m2的公共建筑使用全空气调节系统时,宜用直接数字控制系统。系统功能及监测控制内容应根据建筑功能、相关标准、系统类型等通过技术经济比较确定。

该规定为空调(供暖)系统根据实际负荷进行动态调整提供了条件,同时也为水泵的智能化控制提供了依据。

空调系统:

对冷水机组温差的要求:

冷水机组的冷水供回水设计温差不应小于5℃。在技术可靠和经济合理的前提下宜尽量加大冷水供回水温差。空气调节冷却水系统应满足下列基本控制要求:冷水机组运行时,冷却水最低回水温度的控制。

要求应稳定供回水温差, 并在一定条件下加大温差,同时控制冷水机组的回水温度。

旁通管:

设计一代化的空调系统,其挑战之一就是一次侧定流量和二次侧变流量的连接问题。

此问题可通过在一、二次侧间安装一根 “旁通管”解决,但是实践表明此法存在一定问题。冷冻机内大流量的改变将影响系统的运行温度,从而影响冷冻机效率。

例1:一次侧流量与二次侧流量相等,旁通管内流量: 0m3/h。

例:6000m2建筑,制冷效果0,03kW/m2,3台冷冻机 (20%+40%+40%)

Dt系统 5℃,最小流量10% (此例为20%)。

一次侧流量20%,二次侧流量10%。旁通管内流量:34.4m3/h。

例:6000m2建筑,制冷效果0.03kW/m2,3台制冷机(20% +40%+40%);Dt系统5℃,最小流量10%。

一次侧流量20%,二次侧流量30%。旁通管内流量:34.4m3/h。

例:6000m2建筑,制冷效果 0.03 kW/m2,3 台冷冻机 (20%+40%+40%) ;Dt系统5℃,最小流量10%。

耦合罐:

在一次侧和二次侧间安装耦合罐使得一次侧、二次侧之间流量不同时,仍保持温度恒定成为可能。

耦合罐可控制冷冻机的起/停,其大小决定了起停的时间间隔,小型罐提供较短的时间间隔,大型罐提供较大的时间间隔。

耦合罐的尺寸:

需要条件:

Q Pmin:一次侧最小流量 [m3/H](此流量与最小冷冻机决定);

Q Smin:二次侧最小流量 [m3/H](给予负荷侧)

冷冻机最小运行时间:最小运行时间以分钟计[min],(此时间由冷冻机型号决定)。

例:一次侧流量变化范围 68.8-344m3/h,二次侧流量变化范围34.4-344m3/h,温度不变。

例:6000m2建筑,制冷效果0.03kW/m2,3台冷冻机(20% +40%+40%);Dt 系统 5℃,最小流量10%。

Example:

Q Pmin:冷冻机制冷量:400 kW;

Dt系统:5℃;

Q:(400×0.86)/5=68.8m3/h。

Q Smin:最大流量的10%,效果:2000 kW

Dt 系统:5℃;

Q:(2000×0.86)/5=344m3/h

最小:Q (344×0.1):34.4m3/h

冷冻机最小运行时间:6分。

耦合罐容量计算:

一次侧定流量:

一次侧泵(一台冷冻机):

一次侧通过安装节流阀调整其流量:

一次侧用可调速泵调整流量:

含有多台冷冻机的不可控系统:

含有多台冷冻机的定流量系统:

全空调系统/空气盘管/混合回路控制:

全空调系统的设计条件:

公共建筑节能设计规范(GB50189-2015):

4.5.8 全空气空调系统的控制应符合下列规定:

1 应能进行风机、风阀和水阀的启停连锁控制;

2 应能按使用时间进行定时启停控制,宜对启停时间进行优化调整;

3 用变风量系统时,风机应用变速控制方式;

4 过渡季宜用加大新风比的控制方式;

5 宜根据室外气象参数优化调节室内温度设定值;

6全新风系统送风末端宜用设置人离延时关闭控制方式。

4.4.3设计变风量全空气空气调节系统时,应用变频自动调节风机转速的方式,并应在设计文件中标明每个变风量末端装置的最小送风量。

冷却表面的控制:

通过流量控制“两通阀”调整热工况:

通过流量控制“三通阀”调整热工况:

通过温度控制“两通阀”调整热工况:

通过温度控制“三通阀”调整热工况:

处于中低负荷状态时,流量控制可能造成换热表面上下过高的温差。使用温度控制可以降低这种风险。

不同参数要求条件下的空调系统:

公共建筑节能设计规范(GB50189-2015):

4.1.7使用时间不同的空气调节区不应划分在同一个定风量全空气风系统中。温度、湿度等要求不同的空气调节区不宜划分在同一个空气调节风系统中。

该规定要求对参数条件要求差异较大的区域,实行分区控制。

空调系统:三次泵可改善系统平衡:

使用三次泵的优点:

较小的二次泵,电动机和驱动;

相对二次泵+平衡阀系统,更宜实现变频和节能设计。

降低各连接点的压差;降低运行成本;

较高的灵活性以适应系统的改造;

使每个压差传感器准确定位;

降低二次泵选型过大的风险。

二次侧泵的配置及控制:

二次泵系统设计要求:

公共建筑节能设计规范(GB50189-2015):

4.3.5集中空调冷、热水系统的设计应符合下列规定:

2 冷水水温和供回水温差要求一致且各区域管路压力损失相差不大的中小型工程,宜用变流量一级泵系统;单台水泵功率较大时,经技术经济比较,在确保设备的适应性、控制方案和运行管理可靠的前提下,空调冷水可用冷水机组和负荷侧均变流量的一级泵系统,且一级泵应用调速泵。

3 系统作用半径较大、设计水流阻力较高的大型工程,空调冷水宜用变流量二级泵系统。当各环路的设计水温一致且设计水流阻力接近时,二级泵宜集中设置;当各环路的设计水流阻力相差较大或各系统水温或温差要求不同时,宜按区域或系统分别设置二级泵,且二级泵应用调速泵。

4 提供冷源设备集中且用户分散的区域供冷的大规模空调冷水系统,当二级泵的输送距离较远且各用户管路阻力相差较大,或者水温(温差)要求不同时,可用多级泵系统,且二级泵等负荷侧各级泵应用调速泵。

4.3.7用换热器加热或冷却的二次空调水系统的循环水泵宜用变速调节。

传感器放在哪?

智能化控制意味着:

不仅是针对泵产品,而且是针对整体系统的最优化解决方案:恒定曲线,恒定压力,比例压差,温度控制,恒定流量。节能20-50%。

相信经过以上的介绍,大家对空调水系统的节能方式与水泵调节示例也是有了一定的认识。欢迎登陆中达咨询,查询更多相关信息。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd